[1]钟进凤,刘慧芳*.一类非线性差分方程亚纯解的增长性[J].江西师范大学学报(自然科学版),2019,(05):508-512.[doi:10.16357/j.cnki.issn1000-5862.2019.05.12]
 ZHONG Jinfeng,LIU Huifang*.The Growth of Meromorphic Solutions of Some Type of Nonlinear Difference Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(05):508-512.[doi:10.16357/j.cnki.issn1000-5862.2019.05.12]
点击复制

一类非线性差分方程亚纯解的增长性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
508-512
栏目:
出版日期:
2019-10-10

文章信息/Info

Title:
The Growth of Meromorphic Solutions of Some Type of Nonlinear Difference Equations
文章编号:
1000-5862(2019)05-0508-05
作者:
钟进凤刘慧芳*
江西师范大学数学与信息科学学院,江西 南昌 330022
Author(s):
ZHONG JinfengLIU Huifang*
College of Mathematics and Informatics,Jiangxi Normal University,Nanchang Jiangxi 330022,China
关键词:
差分方程 亚纯函数 增长级
Keywords:
difference equation meromorphic function order of growth
分类号:
O 174.52
DOI:
10.16357/j.cnki.issn1000-5862.2019.05.12
文献标志码:
A
摘要:
应用Nevanlinna 理论研究非线性差分方程f n(z)+Pd(z,f)=p1eα1(z)+p2eα2(z)亚纯解的存在性,其中Pd(z,f)为f的d次差分多项式,p1,p2为f的非零小函数,α12为级小于1的非常数整函数, 得到上述方程存在超级小于1的亚纯解的必要条件和解的表达式.
Abstract:
Using Nevanlinna theory,the existence of meromorphic solutions of the nonlinear difference equation f n(z)+Pd(z,f)=p1eα1(z)+p2eα2(z) are investigated,where Pd(z,f)is a difference polynomial in f of degree d,p1,p2 are non-vanishing small meromorphic functions of f,and α12 are non-constant entire functions with order less than 1.Some necessary conditions that guarantee the above equation admits meromorphic solutions of hyper-order less than 1 and the expression for the solution are obtained.

参考文献/References:

[1] 杨乐.值分布论及其新研究[M].北京:科学出版社,1982.
[2] Hayman W K.Meromorphic functions[M].Oxford:Clarendon Press,1964.
[3] Laine I.Nevalinna theory and complex differential equations[M].Berlin:Walter de Gruyter,1993.
[4] Yang Chungchun,Li Ping.On the transcendental solutions of a certain type of nonlinear differential equations[J].Arch Math,2004,82:442-448.
[5] Li Ping,Yang Chungchun.On the nonexistence of entire solutions of a certain type of nonlinear differential equations[J].J Math Anal Appl,2006,320:827-835.
[6] Li Ping.Entire solutions of certain type of differential equations[J].J Math Anal Appl,2008,344:253-259.
[7] Liao Liangwen,Yang Chungchun,Zhang Jianjun.On meromorphic solutions of certain type of non-linear differential equations[J].Ann Acad Sci Fenn Math,2013,38:581-593.
[8] Liao Liangwen.The new developments in the research of nonlinear complex differential equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,39(4):331-339.
[9] Liao Liangwen,Yang Chungchun.Some new and old(unsolved)problems and conjectures on factorization theory,dynamics and functional equations of meromorphic functions[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,41(3):242-247.
[10] Chen Zongxun,Yang Chungchun.On entire solutions of certain type of differential-difference equations[J].Taiwanese J Math,2014,18(3):677-685.
[11] Zhang Jie,Liao Liangwen.On entire solutions of a certain type of nonlinear differential and difference equations[J].Taiwanese J Math,2011,15(5):2145-2157.
[12] Liu Huifang,Mao Zhiqiang.On entire solutions of some type of nonlinear difference equations[J].Acta Math Sci,2018,38(3):819-828.
[13] 吴丽镐.一类微差分方程整函数解的性质[J].江西师范大学学报:自然科学版,2018,42(6):582-585.
[14] Halburd R G,Korhonen R J.Holomorphic curves with shift-invariant hyperplane preimages[J].Trans Amer Math Soc,2014,366(8):4267-4298.
[15] Halburd R G,Korhonen R J.Difference analogue of the lemma on the logarithmic derivative with applications to difference equations[J].J Math Anal Appl,2006,314:477-487.
[16] Yang Chungchun,Yi Hongxun.Uniqueness theory of meromorphic functions[M].New York:Kluwer Academic Publishers,2003.

相似文献/References:

[1]涂金,刘翠云,徐洪焱.亚纯函数相对于(r)的[p,q]增长级[J].江西师范大学学报(自然科学版),2012,(01):47.
 TU Jin,LIU Cui-yun,XU Hong-yan.Meromorphic Functions of Relative [p,q] Order to (r)[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):47.
[2]赵玉萍.具有连续变量的2阶差分方程的振动性[J].江西师范大学学报(自然科学版),2012,(02):165.
 ZHAO Yu-ping.Oscillation Criteria for a Family of Second Order Nonlinear Difference Equations with Continuous Arguments[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):165.
[3]涂金,魏竞斯,徐洪焱.单位圆内[ p,q]-φ(r)级解析函数与亚纯函数的级与型[J].江西师范大学学报(自然科学版),2015,(02):207.
 TU Jin,WEI Jingsi,XU Hongyan.The Order and Type of Meromorphic Functions and Analytic Functions of [p,q]-φ(r)Order in the Unit Disc[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(05):207.
[4]曾娟娟,刘慧芳.高阶线性微分方程亚纯解的增长性[J].江西师范大学学报(自然科学版),2016,40(03):272.
 ZENG Juanjuan,LIU Huifang.On the Growth of Meromorphic Solutions of Higher Order Linear Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2016,40(05):272.
[5]袁文俊,党国强.一类高阶KdV方程的行波复化亚纯解[J].江西师范大学学报(自然科学版),2017,(06):579.
 YUAN Wenjun,DANG Guoqiang.The Traveling Wave Meromorphic Solutions of a Kind of Complex Higher-Order KdV Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(05):579.
[6]涂 金,彭淑凤,饶冬飞.有限对数级亚纯函数与整函数的复合[J].江西师范大学学报(自然科学版),2018,(06):587.[doi:10.16357/j.cnki.issn1000-5862.2018.06.06]
 TU Jin,PENG Shufeng,RAO Dongfei.The Composition of Meromorphic Function and Entire Function of Finite Logarithmic Order[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(05):587.[doi:10.16357/j.cnki.issn1000-5862.2018.06.06]
[7]陈海莹,郑秀敏*.齐次与非齐次复线性复合函数方程亚纯解的增长性[J].江西师范大学学报(自然科学版),2019,(04):336.[doi:10.16357/j.cnki.issn1000-5862.2019.04.02]
 CHEN Haiying,ZHENG Xiumin.The Growth of Meromorphic Solutions of Homogeneous and Non-Homogeneous Complex Linear Equations for Composite Functions[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(05):336.[doi:10.16357/j.cnki.issn1000-5862.2019.04.02]
[8]龙见仁,秦大专.关于微分差分多项式零点分布的几个结果[J].江西师范大学学报(自然科学版),2020,(05):510.[doi:10.16357/j.cnki.issn1000-5862.2020.05.11]
 LONG Jianren,QIN Dazhuan.Some Results of Zero Distribution for Differential-Difference Polynomials[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(05):510.[doi:10.16357/j.cnki.issn1000-5862.2020.05.11]
[9]简伟刚,陈园园.超线性扰动下的差分方程S渐进ω周期解[J].江西师范大学学报(自然科学版),2021,(04):339.[doi:10.16357/j.cnki.issn1000-5862.2021.04.03]
 JIAN Weigang,CHEN Yuanyuan.The S-Asmptotically ω-Periodic Type Solutions for Difference Equations with Superlinear Perturbation[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(05):339.[doi:10.16357/j.cnki.issn1000-5862.2021.04.03]

备注/Memo

备注/Memo:
收稿日期:2019-03-11基金项目:国家自然科学基金(11661044)资助项目.通信作者:刘慧芳(1973-),女,江西丰城人,教授,博士,主要从事复分析研究.E-mail:liuhuifang73@sina.com
更新日期/Last Update: 2019-10-10