[1]应 锐,徐洪焱*.随机Dirichlet级数的Hadamard乘积的增长性[J].江西师范大学学报(自然科学版),2019,(05):513-517.[doi:10.16357/j.cnki.issn1000-5862.2019.05.13]
 YING Rui,XU Hongyan*.The Growth of Hadamard Product of Random Dirichlet Series[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(05):513-517.[doi:10.16357/j.cnki.issn1000-5862.2019.05.13]
点击复制

随机Dirichlet级数的Hadamard乘积的增长性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
513-517
栏目:
出版日期:
2019-10-10

文章信息/Info

Title:
The Growth of Hadamard Product of Random Dirichlet Series
文章编号:
1000-5862(2019)05-0513-05
作者:
应 锐1徐洪焱2*
1.上饶幼儿师范高等专科学校,江西 上饶 334000; 2.上饶师范学院数学与计算机学院,江西 上饶 334000
Author(s):
YING Rui1XU Hongyan2*
1.Shangrao Preschool Education College,Shangrao Jiangxi 334001,China; 2.School of Mathematics and Computer Science,Shangrao Normal University,Shangrao Jiangxi 334001,China
关键词:
随机Dirichlet级数 整函数 双下q-型
Keywords:
random Dirichlet series entire function double lower q-type
分类号:
O 174.55
DOI:
10.16357/j.cnki.issn1000-5862.2019.05.13
文献标志码:
A
摘要:
利用随机Dirichlet级数理论,结合Hadamard乘积性质,主要研究了随机Dirichlet级数的Dirichlet-Hadamard乘积级数的增长性,得到了随机Dirichlet-Hadamard乘积级数与原随机Dirichlet级数的q-级、下q-级、q-型 、下q-型与双下q-型之间的关系定理.
Abstract:
By using the theory of random Dirichlet series,and combining the properties of Hadamard product,the growth of the Hadamard product of random Dirichlet series is studied.Some results about q-order,lower q-order,q-type,lower q-type and double lower q-type between random Dirichlet series and random Dirichlet-Hadamard product series are obtained.

参考文献/References:

[1] 余家荣,丁晓庆,田范基.Dirichlet级数与随机Dirichlet级数的值分布[M].武汉:武汉大学出版社,2004.
[2] 高宗升.Dirichlet级数表示的整函数的增长性[J].数学学报,1999,42(4):741-748.
[3] 孙道椿,高宗升.半平面上Dirichlet级数的增长级[J].数学物理学报,2002,22(4):557-563.
[4] 孙道椿,陈特为.无限级Dirichlet级数[J].数学学报,2001,44(2):259-268.
[5] 孔荫莹.Dirichlet-Hadamard乘积的q-级与q-型[J].数学学报,2009,52(6):1165-1172.
[6] 孔荫莹,邓冠铁.Dirichlet级数的Dirichlet-Hadamard乘积[J].数学年刊,2014,35(2):145-152.
[7] 徐洪焱,易才凤.半平面上有限级Dirichlet级数的逼近[J].数学学报,2010,53(3):617-624.
[8] Shang Lina,Gao Zongsheng.Entire functions defined by Dirichlet series[J].J Math Anal Appl,2008,339:853-862.
[9] Oskolkov V A,Kalinichenko L I.Growth of entire functions represented by Dirichlet series[J].Sbornik:Mathematics,1996,187(10):1545-1560.
[10] 余家荣.随机狄里克莱级数的一些性质[J].数学学报,1978,21(2):97-118.
[11] Yu Jiarong,Sun Daochun.On the distribution of values of random Dirichlet series(I)[M].Singapore:Lectures on Complex Anal,World Scientific,1988.
[12] Yu Jiarong.Borel lines of random Dirichlet series[J].Acta Math Sci,2002,22B(1):1-8.
[13] Tian Fanji.The growth of random Dirichlet series(I)[J].Acta Math Scientia,2000,22B(3):390-396.
[14] Tian Fanji,Sun Daochun,Yu Jiarong.Sur les series aleatoires de Dirichlet[J].C R Acad Sci Paris Ser I,1998,362:427-431.
[15] 田范基.随机狄里克莱级数的一些性质[D].武汉:武汉大学,1998.
[16] Sun Daochun.On the distribution of values of random Dirichlet series(II)[J].Chin Ann of Math,1990,11B:33-34.
[17] 田范基.半平面上的无限级随机Dirichlet 级数的值分布[J].数学物理学报,2000,20(2):278-287.
[18] Paley R E A C,Zygmund A.On some series of functions(1),(2),(3)[J].Proc Camb Phil Soc,1930,26:337-357; 1930,26:458-474; 1932,32:190-205.
[19] 徐洪焱,孔荫莹,崔永琴.Dirichlet级数与其Dirichlet-Hadamard乘积的增长性[J].数学年刊,2018,39(1):77-86.
[20] 李云霞,孔荫莹.随机Dirichlet-Hadamard乘积所表示的整函数的增长性[J].四川师范大学学报:自然科学版,2018,41(4):522-527.

相似文献/References:

[1]陆万春,易才凤.在矩控制下随机Dirichlet级数的(p,q)(R)型[J].江西师范大学学报(自然科学版),2012,(05):482.
 LU Wan-chun,YI Cai-feng.The(p, q)(R) Type of Random Dirichlet Series under the Condition of Moment[J].Journal of Jiangxi Normal University:Natural Science Edition,2012,(05):482.
[2]熊辉,刘慧芳.系数为迭代级整函数的高阶线性微分方程的复振荡[J].江西师范大学学报(自然科学版),2015,(02):211.
 XIONG Hui,LIU Huifang.The Complex Oscillation of Higher Order Linear Differential Equations with Coefficients of Finite Iterated Order[J].Journal of Jiangxi Normal University:Natural Science Edition,2015,(05):211.
[3]涂鸿强,刘慧芳.一类2阶线性微分方程解的增长性[J].江西师范大学学报(自然科学版),2017,(02):184.
 TU Hongqiang,LIU Huifang.On Growth of Solutions of Some Second Order Linear Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(05):184.
[4]涂 金,陈建军,徐洪焱.系数为指数型整函数2阶线性微分方程解的超级和零点[J].江西师范大学学报(自然科学版),2017,(06):591.
 TU Jin,CHEN Jianjun,XU Hongyan.The Hyper Order and Zeros of Solutions of Second Order Linear Differential Equations with the Coefficients of Exponential Entire Functions[J].Journal of Jiangxi Normal University:Natural Science Edition,2017,(05):591.
[5]吴丽镐.一类微差分方程整函数解的性质[J].江西师范大学学报(自然科学版),2018,(06):582.[doi:10.16357/j.cnki.issn1000-5862.2018.06.05]
 WU Lihao.The Properties of Entire Solutions of a Certain Type of Differential-Difference Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(05):582.[doi:10.16357/j.cnki.issn1000-5862.2018.06.05]
[6]余民权,徐洪焱*,刘 林.几类复域偏微差分方程整函数解的存在性与形式[J].江西师范大学学报(自然科学版),2021,(06):620.[doi:10.16357/j.cnki.issn1000-5862.2021.06.10]
 YU Minquan,XU Hongyan*,LIU Lin.The Existence and Forms of Entire Solutions of Several Complex Partial Differential-Difference Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(05):620.[doi:10.16357/j.cnki.issn1000-5862.2021.06.10]
[7]谭 晖,肖丽鹏*.关于一类高阶复微分方程解的增长性[J].江西师范大学学报(自然科学版),2022,(04):335.[doi:10.16357/j.cnki.issn1000-5862.2022.04.02]
 TAN Hui,XIAO Lipeng*.On the Growth of Solutions of a Class of Higher Order Complex Differential Equations[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(05):335.[doi:10.16357/j.cnki.issn1000-5862.2022.04.02]

备注/Memo

备注/Memo:
收稿日期:2019-03-05基金项目:国家自然科学基金(11561033),江西省自然科学基金(20181BAB201001)和江西省教育厅科技课题(GJJ180734,GJJ170788,GJJ170759)资助项目.通信作者:徐洪焱(1980-),男,江西乐平人,副教授,主要从事复分析理论及应用研究.E-mail:xhyhhh@126.com
更新日期/Last Update: 2019-10-10