[1]杨喜艳,张家军*.分子记忆对基因表达过程中的能量消耗影响[J].江西师范大学学报(自然科学版),2020,(02):215-220.[doi:10.16357/j.cnki.issn1000-5862.2020.02.19]
 YANG Xiyan,ZHANG Jiajun*.The Influence of Molecular Memor on Energy Consumption in Gene Expression[J].Journal of Jiangxi Normal University:Natural Science Edition,2020,(02):215-220.[doi:10.16357/j.cnki.issn1000-5862.2020.02.19]
点击复制

分子记忆对基因表达过程中的能量消耗影响()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
215-220
栏目:
数学与应用数学
出版日期:
2020-04-10

文章信息/Info

Title:
The Influence of Molecular Memor on Energy Consumption in Gene Expression
文章编号:
1000-5862(2020)02-0215-06
作者:
杨喜艳1张家军2*
1.广东金融学院金融数学与统计学院,广东 广州 510521; 2.中山大学数学学院,广东 广州 510275
Author(s):
YANG Xiyan1ZHANG Jiajun2*
1.School of Financial Mathematics and Statistics,Guangdong University of Finance,Guangzhou Guangdong 510521,China; 2.School of Mathematics,SunYat-Sen University,Guangzhou Guangdong 510275,China
关键词:
分子记忆 基因表达 能量消耗 极小势
Keywords:
molecular memory gene expression energy consumption potential minimum
分类号:
O 242; Q 141; Q 332
DOI:
10.16357/j.cnki.issn1000-5862.2020.02.19
文献标志码:
A
摘要:
一方面,分子记忆广泛存在于基因表达过程中; 另一方面,由热动力学的观点,基因表达过程必然消耗能量.这引起一个未探索的问题:分子记忆如何影响基因表达的能量消耗.由此,通过分析一个代表性的、带记忆的基因表达模型,结果发现:分子记忆越强,基因表达消耗越多能量; 极小势和能量消耗之间存在反比例关系,这表明基因表达越稳定,需要消耗的能量越多.这些结果表明分子记忆是一个不可忽略的因素,它能有意义地影响基因表达过程中的能量消耗.
Abstract:
On one hand,molecular memory exists extensively in gene expression.On the other hand,gene expression necessarily consumes energy from the viewpoint of thermodynamics.This raises an unexplored issue how molecular memory affects energy consumption in gene expression.By analyzing a representative stochastic model of gene expression with molecular memory,it is found that the stronger is the molecular memory,the more is the energy consumed.In addition,it is found that there is an inverse relationship between potential minimum and energy consumption,implying that more stable gene expression needs more energy consumption.These results indicate that molecular memory is an unneglectable factor and can significantly impact energy consumption in gene expression.

参考文献/References:

[1] Van Kampen N G.Stochastic processes in physics and chemistry[M].North-Holland:Amsterdam,2007.
[2] Pardox E.Markov processes and applications:algorithms,networks,genome and finance[M].New York:Wiley and Sons,2008.
[3] Andersson H,Britton T.Stochastic epidemic models and their statistical analysis[M].New York:Springer,2000.
[4] Pedraza J M,Paulsson J.Effects of molecular memory and bursting on fluctuations in gene expression[J].Science,2008,319(5861):339-343.
[5] Jia Tao,Kulkarni R V.Intrinsic noise in stochastic models of gene expression with molecular memory and bursting[J].Phys RevLett,2011,106(5):058102.
[6] Guérin T,Leveriner N,Bénichou O,et al.Mean first-passage times of non-Markovian random walkers in confinement[J].Nature,2016,534(7607):356-359.
[7] Guérin T,Bénichou O,Voituriez R.Non-Markovian polymer reaction kinetics[J].Nat Chem,2012,4(7):568-573.
[8] Stumpf P S,Smith R C G,Lenz M,et al.Stem cell differentiation as a non-Markov stochastic process[J].Cell Syst,2017,5(3):268-282.
[9] Van Mieghem P,van de Bovenkamp R.Non-Markovian infection spread dramatically alters the susceptible-infectd-susceptible epidemic threshold in networks[J].Phys Rev Lett,2013,110(10):108701.
[10] Kiss I Z,Röst G,Vizi Z.Generalization of pairwise models to non-Markovian epidemics on networks[J].Phys Rev Lett,2015,115(7):078701.
[11] Masuda N,Rocha L E C.A Gillespie algorithm for non-Markovian stochastic processes[J].SIAM Rev,2018,60(1):95-115.
[12] Aquino T,Dentz M.Chemical continuous time random walks[J].Phys Rev Lett,2017,119(23):230601.
[13] Landman U,Montroll E W,Shlesinger M F.Random walks and generalized master equations with internal degrees of freedom[J].ProcNatl AcadSci,1977,74(2):430-433.
[14] Zhang Jiajun,Zhou Tianshou.Stationary equations for non-Markovian biochemical systems[J].Proc Natl Acad Sci,2019,116(47):23542-23550.
[15] Wagner A.Energy constraints on the evolution of gene expression[J].Mol Bio Evol,2015,22(6):1365-1374.
[16] Liu Peijiang,Wang Haohua,Huang Lifang,et al.The dynamic mechanism of noisy signal decoding in gene regulation[J].Scientific Reports,2017,7:42128.
[17] Wang Haohua,Liu Peijiang,Li Qingqing,et al.Entangled signal pathways can both control expression stability and induce stochastic focusing[J].FEBS Lett,2018,592(7):1135-1149.
[18] Huang Lifang,Yuan Zhanjiang,Yu Jianshe,et al.Fundamental principles of energy consumption for gene expression[J].Chaos,2015,25(12):123101.
[19] Li Qingqing,Din A,Zhou Tianshou.Energy cost and mean dwell times for the activity of promoter with complex structure[J].J Syst Sci Complex,2019,32(2):510-525.
[20] Peccoud J,Ycart B.Markovian modeling of gene-product synthesis[J].Theor Popul Biol,1995,48(2):222-234.
[21] Shahrezaei V,Swain P S.Analytical distributions for stochastic gene expression[J].Proc Natl Acad Sci,2008,105(45):17256-17261.
[22] Qian Hong.Phosphorylation energy hypothesis:open chemical systems and their biological functions[J].Annu Rev Phys Chem,2007,58(1):113-142.

备注/Memo

备注/Memo:
收稿日期:2019-08-05
基金项目:国家自然科学基金(11601094,11631005,11475273,11775314),广州市科技基金(201707010117),广东省自然科学基金(2018A0303130120)和广东省教育科学规划课题(2018GXJK119)资助项目.
通信作者:张家军(1978-),男,湖北麻城人,副教授,博士,博士生导师,主要从事计算系统生物学的研究.E-mail:zhjiajun@mail.sysu.edu.cn
更新日期/Last Update: 2020-04-10