[1]石娟娟,熊向团*.时间反向热传导问题的拟逆正则化方法及误差估计[J].江西师范大学学报(自然科学版),2021,(01):22-25.[doi:10.16357/j.cnki.issn1000-5862.2021.01.03]
 SHI Juanjuan,XIONG Xiangtuan*.The Quasi-Reversibility Regularization Method and Error Estimate for the Time-Inverse Heat Conduction Problem[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(01):22-25.[doi:10.16357/j.cnki.issn1000-5862.2021.01.03]
点击复制

时间反向热传导问题的拟逆正则化方法及误差估计()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年01期
页码:
22-25
栏目:
出版日期:
2021-02-10

文章信息/Info

Title:
The Quasi-Reversibility Regularization Method and Error Estimate for the Time-Inverse Heat Conduction Problem
文章编号:
1000-5862(2021)01-0022-04
作者:
石娟娟熊向团*
西北师范大学数学与统计学院,甘肃 兰州 730070
Author(s):
SHI JuanjuanXIONG Xiangtuan*
School of Mathematics and Statistics,Northwest Normal University,Lanzhou Ganshu 730070,China
关键词:
不适定问题 反向热方程 拟逆正则化方法 误差估计
Keywords:
ill-posed problem inverse heat equation quasi-reversibility regularization method error estimate
分类号:
O 175
DOI:
10.16357/j.cnki.issn1000-5862.2021.01.03
文献标志码:
A
摘要:
该文讨论了时间反向热传导问题,该问题是严重不适定问题,它的解在一定条件下存在但不连续依赖于数据,这给数据处理带来了很大的不便.该文给出一个简单便捷的拟逆正则化方法来恢复解对数据的连续依赖性.根据拟逆正则化问题构造正则解,在先验正则化参数选取规则下,给出了该问题的近似解和精确解之间的误差估计,并用数值算例表明该方法是有效的.
Abstract:
The backward heat conduction problem in time is considered,although its solution exists but discontinuously depends on the data.It is very inconvenient for numerical computation,so a simple and convenient new quasi-reversibility regularization method is proposed to restore the continuous dependence of the solution on the data.The regularization solution is obtained according to the quasi-reversibility regularization problem.Meanwhile,the convergence of errors between the approximate solution and the exact solution for the ill-posed problem is estimated,and the priori regularization parameter selection rules of the method are given.A numerical example is made to demonstrate the effectiveness of the proposed method.

参考文献/References:

[1] Isakov V.Inverse problems for partial differental equation[M].New York:Springer-Verlag,1998.
[2] Lattés R,Lions J L.The method of quasi-reversibility:applications to partial differental equations[M].New York:American Elseiver,1969.
[3] Miller K.Stablized quasi-reversibility and other nearly-best-possible methods for non-well-possed problems[M]∥Knops R J.Symposium on non-well-posed problems and logarthmic convexity.Berlin:Springer-Verlag,1973:161-176.
[4] Wang Jungang,Wei Ting.Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation[J].Applied Mathematical Modelling,2015,39(20):6139-6149.
[5] Li Xiaoxiao,Yang Fan,Liu Jie,et al.The quasi-reversibility regularization method for identifying the unknown source for the modified Helmholtz equation[J].Journal of Applied Mathematics,2013,2013(2):245963.
[6] Liu Jichuan,Wei Ting.A quasi-reversibility regularization method for an inverse heat conduction problem without intial data[J].Applied Mathematics and Computation,2013,219(23):10866-10881.
[7] Yang Fan,Fu Chuli.The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation[J].Applied Mathematical Modelling,2015,39(5/6):1500-1512.[8] Zhao Zhenyu,Meng Zehong.A modified Tikhonov regularization method for a backward heat equation[J].Inver Problems in Science and Engineering,2011,19(8):1175-1182.
[9] Su Lingde,Jiang Tongsong.Numerical method for solving nonhomogeneous backward heat conduction problem[J].International Journal of Differential Equations,2018,2018:1868921.
[10] Ku Chengyu,Liu Chihyu,Yeih Weichung,et al.A novel space-time meshless method for solving the backward heat conduction problem[J].International Journal of Heat and Mass Transfer,2019,130:109-122.
[11] Fu Chuli,Xiong Xiangtuan,Qian Zhi.Fourier regularization for a backward heat equation[J].Journal of Mathematical Analysis and Application,2007,331(1):472-480.
[12] Eldén L.Approximations for a Cauchy problem for the heat equation[J].Inverse Problems,1987,3(2):263-273.
[13] Weber C F.Analysis and solution of the ill-posed inverse heat conduction problem[J].International Journal of Heat and Mass Transfer,1981,24(11):1783-1792.
[14] Qian Zhi,Fu Chuli,Feng Xiaoli.A modified method for high order numerical derivatives[J].Applied Mathematics and Computation,2006,182(2):1191-1200.
[15] Qian Zhi,Fu Chuli,Xiong Xiangtuan.A modified method for a non-standard inverse heat conduction problem[J].Applied Mathematics and Computation,2006,180(2):453-468.
[16] Liu Jijun,Yamamoto M.A backward problem for the time-fractional diffusion equation[J].Applicable Analysis,2010,89(11):1769-1788.
[17] Qian Ailin,Xiong Xiangtuan,Wu Yujiang.On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation[J].Journal of Computation and Applied Mathematics,2010,233(8):1969-1979.

相似文献/References:

[1]胡彬,夏赟,喻建华.算子非精确条件下确定正则化参数的一种方法[J].江西师范大学学报(自然科学版),2014,(01):65.
 HU Bin,XIA Yun,YU Jian-hua.The Method for Determining Regularization Parameters with Perturbed Operators[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(01):65.
[2]邱淑芳,王泽文,曾祥龙,等.一类时间分数阶扩散方程中的源项反演解法[J].江西师范大学学报(自然科学版),2018,(06):610.[doi:10.16357/j.cnki.issn1000-5862.2018.06.11]
 QIU Shufang,WANG Zewen,ZENG Xianglong,et al.The Numerical Method for Reconstructing Source Term in a Time Fractional Diffusion Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2018,(01):610.[doi:10.16357/j.cnki.issn1000-5862.2018.06.11]
[3]任丽婷,熊向团*.带有非齐次Dirichlet条件的Helmholtz方程柯西问题的傅里叶方法[J].江西师范大学学报(自然科学版),2019,(02):184.[doi:10.16357/j.cnki.issn1000-5862.2019.02.12]
 REN Liting,XIONG Xiangtuan*.The Fourier Method for the Cauchy Problem of the Helmholtz Equation with Inhomogeneous Dirichlet Data[J].Journal of Jiangxi Normal University:Natural Science Edition,2019,(01):184.[doi:10.16357/j.cnki.issn1000-5862.2019.02.12]

备注/Memo

备注/Memo:
收稿日期:2020-10-25
基金项目:国家自然科学基金(11661072)和西北师范大学科学计算创新团队(NWNU-LKQN-17-5)资助项目.
通信作者:熊向团(1977-),男,湖北武汉人,教授,博士,博士生导师,主要从事微分方程数值解研究.E-mail:xiongxt@fudan.edu.com
更新日期/Last Update: 2021-04-10