[1]洪清玉,康春花*,曾平飞,等.数学问题提出能力的测评模型及指标赋权[J].江西师范大学学报(自然科学版),2021,(01):38-45.[doi:10.16357/j.cnki.issn1000-5862.2021.01.06]
 HONG Qingyu,KANG Chunhua*,ZENG Pingfei,et al.The Evaluation Model and Index Weighting of Ability to Propose Mathematical Problems[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(01):38-45.[doi:10.16357/j.cnki.issn1000-5862.2021.01.06]
点击复制

数学问题提出能力的测评模型及指标赋权()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年01期
页码:
38-45
栏目:
出版日期:
2021-02-10

文章信息/Info

Title:
The Evaluation Model and Index Weighting of Ability to Propose Mathematical Problems
文章编号:
1000-5862(2021)01-0038-08
作者:
洪清玉1康春花12*曾平飞1俞向军1
1.浙江师范大学教师教育学院,浙江 金华 321004; 2.浙江师范大学浙江省智能教育技术与应用重点实验室,浙江 金华 321004
Author(s):
HONG Qingyu1KANG Chunhua12*ZENG Pingfei1YU Xiangjun1
1.College of Teacher Education,Zhejiang Normal University,Jinhua Zhejiang 321004,China; 2.Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province,Zhejiang Normal University,Jinhua Zhejiang 321004,China
关键词:
数学问题提出能力 测评指标 测评工具 指标赋权
Keywords:
ability to propose mathematical problems evaluation indicators evaluation tools weighting
分类号:
B 841
DOI:
10.16357/j.cnki.issn1000-5862.2021.01.06
文献标志码:
A
摘要:
数学问题提出能力的测量与评估成为数学教学研究的热点议题,其测评模型及指标赋权的合理性与科学性是研究者关注的首要问题.该文在梳理数学问题的定义、已有的测评内容和方式的基础上,从问题的本质特征、数学特征和语言特征这3个维度构建数学问题提出的测评模型,并对该模型中的指标进行了2级赋权.研究结果表明:(i)验证性因素分析的各项指标均较好,所提测评模型具有较好的结构效度,并且各维度的内部信度也较高;(ii)最大特征根计算的一致性指标CI和一致性比例CR表明,基于矩阵判别表的专家赋权具有较高的一致性,赋权具有较好的合理性和科学性.测评模型和指标权重的确定,为如何测量及评估学生的问题提出能力提供了较为合理的思路.
Abstract:
The measurement and evaluation of the ability to propose mathematical problems has become a hot topic in mathematical teaching research,among which the rationality and scientificity of the evaluation model and index weight have become the primary concern of researchers.On the basis of sorting out the definition of mathematical problems,the existing evaluation contents and methods,the evaluation model proposed by mathematical problems is constructed from the three dimensions of the essential characteristics of the problems,the mathematical characteristics of the problems and the linguistic characteristics of the problems,and two levels of weights are assigned to the indexes in the model.The results show that the indicators of confirmatory factor analysis are good,the evaluation model has good structural validity,and the internal reliability of each dimension is high.The consistency index CI and the consistency ratio CR calculated based on the maximum characteristic root show that the expert weighting based on the matrix discriminant table has a high consistency,and the weighting is reasonable and scientific.The determination of evaluation model and index weight provides a scientific and reasonable way of thinking on how to measure and evaluate students’ ability to propose problems.

参考文献/References:

[1] 阿尔伯特·爱因斯坦,利奥波德·英费尔德.物理学的进化[M].上海:上海科学技术出版社,1962:65-67.
[2] National Council of Teachers of Mathematics.Urriculum and evaluation standards for school mathematics[M].Reston,VA:NCTM,1989:22-28.
[3] National Council of Teachers of Mathematics.Professional standards for teaching mathematics[M].Reston,VA:NCTM,1991:90-100.
[4] National Council of Teachers of Mathematics.Principles and standards for school mathematics[M].Reston,VA:NCTM,2000:20-30.
[5] Niss M.Mathematical competencies and the learning of mathematics:the Danish KOM project[R].Third Mediterranean Conference on Mathematics Education,2003:115-124.
[6] 中华人民共和国教育部.义务教育数学课程标准:2011年版[M].北京:北京师范大学出版社,2012:4-7,9.
[7] 谢先成.基于核心素养的《普通高中数学课程标准(2017年版)》解读:访数学课程标准修订组组长、东北师范大学原校长史宁中教授[J].教师教育论坛,2018,31(6):6-9.
[8] Singer F M,F Ellerton N,Cai Jinfa.Problem-posing research in mathematics education:some answered and unanswered questions[M].New York:Springer,2015:4-8.
[9] Silver Edward A,Cai Jinfa.An analysis of arithmetic problem posing by middle school[J].Journal for Research in Mathematics Education,1996,27(5):521-539.
[10] Amalina I K,Amirudin M,Budiarto M T.Students’ creativity:problem posing in structured situation[J].Journal of Physics Conference,2018,947(1):12012.
[11] Gonzales N A.Problem formulation:insights from student generated questions[J].School Science and Mathematics,1996,96(3):152-157.
[12] 夏小刚,汪秉彝,吕传汉.中小学生提出数学问题能力的评价再探[J].数学教育学报,2008,17(2):8-11.
[13] 彭聃龄.普通心理学[M].4版.北京:北京师范大学出版社,2012:302.
[14] Newell A,Shaw J C.Human problem solving[M].New Jersey:Prenlice Hall,1972:39-146.
[15] 朱黎生.《义务教育数学课程标准(2011年版)》修订了什么[J].数学教育学报,2012,21(3):7-10.
[16] Ellerton N F.Children’s made-up mathematics problems:a new perspective on talented Mathematicians[J].Educational Studies in Mathematics,1986,17(3):261-271.
[17] Silverman F L,Strohauer W D.Student-generated story problems[J].The Arithmetic Teacher,1992,39(8):6-12.
[18] Osman C, zder Hasan.Generalizability theory research on developing a scoring rubric to assess primary school students’ problem posing skills[J].Eurasia Journal of Mathematics,Science and Technology Education,2017,13(6):2423-2439.
[19] Jonassen D H.Instructional design models for well-structured and III-structured problem-solving learning outcomes[J].Educational Technology Research and Development,1997,45(1):65-94.
[20] 路海东,董妍,王晓平.小学生数学应用题解决的认知机制研究[J].心理科学,2004,27(4):867-870.
[21] An empirical taxonomy of problem posing processes[J].ZDM,2005,37(3):149-158.
[22] Silver E A.On mathematical problem posing[J].For the Learning of Mathematics,1994,14(1):19-28.
[23] English L D.Children’s problem posing within formal and informal contexts[J].Journal Research in Mathematics Education,1998,29(1):83-106.
[24] Mayer R E.Cognitive,metacognitive,and motivational aspects of problem solving[J].Instructional Science,1998,26(1/2):49-63.
[25] 袁维新,吴庆麟.问题解决:涵义、过程与教学模式[J].心理科学,2010(1):153-156.
[26] 宋广文,何文广,孔伟.问题表征、工作记忆对小学生数学问题解决的影响[J].心理学报,2011,43(11):1283-1292.
[27] 连榕.认知心理学[M].北京:高等教育出版社,2010:160-164.
[28] 呙亚慧.小学数学题中三类隐含数量关系提取[D].武汉:华中师范大学,2017.
[29] 郑毓信.问题解决与数学教育[M].南京:江苏教育出版社,1994:46-47.
[30] Hastie R.Problems for judgment and decision making[J].Annual Review of Psychology,2001,52(1):653-683.
[31] 吴明隆.结构方程模型:AMOS的操作与应用[M].重庆:重庆大学出版社,2010:224.
[32] 荣泰生.AMOS 与研究法方法[M].重庆:重庆大学出版社,2010:81-84.
[33] 张柄江.层次分析法及其应用[M].北京:电子王业出化社,2014.

相似文献/References:

[1]洪清玉,康春花,曾平飞*.数学问题提出能力的类别特征:基于潜剖面的分析[J].江西师范大学学报(自然科学版),2022,(06):626.[doi:10.16357/j.cnki.issn1000-5862.2022.06.10]
 HONG Qingyu,KANG Chunhua,ZENG Pingfei*.The Category Characteristics of Mathematical Problem Posing Ability:Analysis Based on Submersible Profile[J].Journal of Jiangxi Normal University:Natural Science Edition,2022,(01):626.[doi:10.16357/j.cnki.issn1000-5862.2022.06.10]

备注/Memo

备注/Memo:
收稿日期:2020-07-11
基金项目:教育部人文社会科学青年基金(19YJC880122)和浙江省智能教育技术与应用重点实验室开放研究基金(jykf20050)资助项目.
通信作者:康春花(1974-),女,江西弋阳人,副教授,博士,主要从事心理测量与评价研究.E-mail:akang@zjnu.edu.cn
更新日期/Last Update: 2021-04-10