[1]王财群,安 静*.圆域上2阶奇异变系数问题的一种有效的差分法[J].江西师范大学学报(自然科学版),2021,(05):514-519.[doi:10.16357/j.cnki.issn1000-5862.2021.05.10]
 WANG Caiqun,AN Jing*.The Efficient Finite Difference Method for Second Order Singular Variable Coefficient Problems in a Circular Domain[J].Journal of Jiangxi Normal University:Natural Science Edition,2021,(05):514-519.[doi:10.16357/j.cnki.issn1000-5862.2021.05.10]
点击复制

圆域上2阶奇异变系数问题的一种有效的差分法()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年05期
页码:
514-519
栏目:
出版日期:
2021-10-10

文章信息/Info

Title:
The Efficient Finite Difference Method for Second Order Singular Variable Coefficient Problems in a Circular Domain
文章编号:
1000-5862(2021)05-0514-06
作者:
王财群安 静*
贵州师范大学数学科学学院,贵州 贵阳 550025
Author(s):
WANG CaiqunAN Jing*
School of Mathematical Sciences,Guizhou Normal University,Guiyang Guizhou 550025,China
关键词:
2阶问题 降维格式 有限差分法 误差估计 圆形区域
Keywords:
second-order problem dimension reduction scheme finite difference method error estimation circular domain
分类号:
O 174
DOI:
10.16357/j.cnki.issn1000-5862.2021.05.10
文献标志码:
A
摘要:
针对圆域上2阶奇异变系数问题,提出了一种基于降维格式的有限差分方法.首先,利用极坐标变换,将原问题转化为一系列等价的1维问题; 其次,针对每一个1维问题,建立了适当的差分格式,并证明了相应的误差估计; 最后,给出了一些数值例子,数值结果表明该算法是非常有效的.
Abstract:
The finite difference method based on dimension reduction scheme is proposed for the second order singular variable coefficient problems in a circular domain.Firstly,the original problem is transformed into a series of equivalent one-dimensional problems by using polar coordinate transformation.Then for each one-dimensional problem,the appropriate difference scheme and corresponding error estimate are established.Finally,some numerical examples are given,and the numerical results show that the algorithm is very effective.

参考文献/References:

[1] Andrews G E,Askey R,Ranjan R.Special functions[M].Cambridge:Cambridge University Press,1999.
[2] Grebenkov D,Nguyen B.Geometrical structure of Laplacian eigen functions[J].SIAM Rev,2013,55(4):601-667.
[3] Felli V,Ferrero A,Terracini S.Asymptotic behavior of solutions to Schr?dinger equations near an isolated singularity of the electromagnetic potential[J].Journal of the European Mathematical Society,2011,13(1):119-174.
[4] Fournais S,Hoffmann-Ostenhof M,Hoffmann-Ostenhof T,et al.Analytic structure of solutions to multiconfiguration equations[J].Journal of Physics A:Mathematical and Theoretical,2009,42(31):1943-1953.
[5] Ahn H J.Vibration of a pendulum consisting of a bob suspended from a wire:the method of integral equations[J].Quarterly of Applied Mathematics,1981,39(1):109-117.
[6] Apel T,Nicaise S.The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges[J].Mathematical Methods in the Applied Sciences,1998,21(6):519-549.
[7] Babuka I,Kellogg R B,Pitka?ranta J.Direct and inverse error estimates for finite elements with mesh refinements[J].Numerische Mathematik,1979,33(4):447-471.
[8] Chen Huajie,He Lianhua,Zhou Aihui.Finite element approximations of nonlinear eigenvalue problems in quantum physics[J].Computer Methods in Applied Mechanics and Engineering,2011,200(21/22):1846-1865.
[9] Li Hengguang,Mazzucato A L,Nistor V.Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains[J].Electronic Transactions on Numerical Analysis,2010,37(1):41-69.
[10] Bcu C,Nistor V,Zikatanov L T. Improving the rate of convergence of ’high order finite elements’ on polygons and domains with cusps[J].Numerische Mathematik,2005,100(2):165-184.
[11] Amore P,Boyd J P,Fernández F M,et al.High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson Extrapolation of second order finite differences[J].Journal of Computational Physics,2016,312:252-271.
[12] Dubiner M.Spectral methods on triangles and other domains[J].Journal of Scientific Computing,1991,6(4):345-390.
[13] Rynne B P,Sleeman B D.The interior transmission problem and inverse scattering from inhomogeneous media[J].SIAM Journal on Mathematical Analysis,1991,22(6):1755-1762.
[14] Shen Jie.Efficient Spectral-Galerkin method I:direct solvers of second- and fourth-order equations using Legendre polynomials[J].SIAM Journal on Scientific Computing,1994,15(6):1489-1505.
[15] Bjorstad P E,Tjostheim B P.Timely communication: efficient algorithms for solving a fourth order equation with Spectral-Galerkin method[J].SIAM Journal on Scientific Computing,1997,18(2):621-632.
[16] Shen Jie,Tang Tao,Wang Lilian.Spectral methods:algorithms,analysis and applications[M].Berlin Heidelberg:Springer-Verlag,2011.
[17] An Jing,Li Huiyuan,Zhang Zhiming.Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains[J].Numerical Algorithms,2020,84(2):427-455.

备注/Memo

备注/Memo:
收稿日期:2020-07-27
基金项目:国家自然科学基金(11661022)和贵州省科学技术基金(黔科合平台人才[2018]5769-01号)资助项目.
通信作者:安 静(1979—),男,贵州思南人,教授,博士,博士生导师,主要从事偏微分方程数值解研究.E-mail:aj154@163.com
更新日期/Last Update: 2021-10-10