参考文献/References:
[1] 陆金甫,关治.偏微分方程数值解法[M].2版.北京:清华大学出版社,2004:97-104.
[2] SPOTZ W F.High-order compact finite difference schemes for computational mechanics[D].Austin:The University of Texas at Austin,1995.
[3] 开依沙尔·热合曼,阿孜古丽·牙生,祖丽皮耶·如孜.求解一维对流扩散方程的高精度紧致差分格式[J].佳木斯大学学报(自然科学版),2014,32(1):135-138.
[4] 开依沙尔·热合曼,努尔买买提·黑力力.求解对流扩散方程的Pade'逼近格式[J].江西师范大学学报(自然科学版),2014,38(3):261-264.
[5] ZHAO Jichao.Highly accurate compact mixed methods for two point boundary value problems[J].Applied Mathematics and Computation,2007,188(2):1402-1418.
[6] BHATT H P,CHOWDHURY A.A high-order implicit-explicit Runge-Kutta type scheme for the numerical solution of the Kuramoto-Sivashinsky equation[J].International Journal of Computer Mathematics,2021,98(6):1254-1273.
[7] BHATT H P,KHALIQ A Q M.Fourth-order compact schemes for the numerical simulation of coupled Burgers' equation[J].Computer Physics Communications,2016,200:117-138.
[8] 祁应楠,武莉莉.一维定常对流扩散反应方程的高精度紧致差分格式[J].华中师范大学学报(自然科学版),2017,51(1):1-6.
[9] DEHGHAN M,MOHEBBI A.High-order compact boundary value method for the solution of unsteady convection-diffusion problems[J].Mathematics and Computers in Simulation,2008,79(3):683-699.
[10] LUO Xuqiong,DU Qikui.An unconditionally stable fourth-order method for telegraph equation based on Hermite interpolation[J].Applied Mathematics and Computation,2013,219(15):8237-8246.
[11] LIN Runchang,YE Xiu,ZHANG Shangyou,et al.A weak Galerkin finite element method for singularly perturbed convection-diffusion:reaction problems[J].SIAM Journal on Numerical Analysis,2018,56(3):1482-1497.
[12] CANCES C,CHAINAIS-HILLAIRET C,KRELL S.Numerical analysis of a nonlinear free-energy diminishing discrete duality finite volume scheme for convection diffusion equations[J].Computational Methods in Applied Mathematics,2018,18(3):407-432.
[13] KRESS R.Numerical analysis[M].New York:Springer Verlag,1998.
[14] WILKINSON J H.The algebraic eigenvalue problem[M].New York:Oxford University Press,1965.
[15] DING Hengfei,ZHANG Yuxin.A new difference scheme with high accuracy and absolute stability for solving convection-diffusion equations[J].Journal of Computational and Applied Mathematics,2009,230(2):600-606.
[16] CHENG Yingda,SHU C W.Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations[J].Computers & Structures,2009,87(11/12):630-641.
[17] MOHEBBI A,DEHGHAN M.High-order compact solution of the one-dimensional heat and advection-diffusion equations[J].Applied Mathematical Modelling,2010,34(10):3071-3084.
相似文献/References:
[1]开依沙尔·热合曼,努尔买买提·黑力力.求解对流扩散方程的Pade'逼近格式[J].江西师范大学学报(自然科学版),2014,(03):261.
KAYSAR Rahman,NURMAMAT Helil.The Pade' Approximation Scheme for Solving Convection-Diffusion Equation[J].Journal of Jiangxi Normal University:Natural Science Edition,2014,(05):261.