[1]黄 辉,左勇华,卢美华.多重拓扑下Fan Ky点的通有稳定性[J].江西师范大学学报(自然科学版),2017,(02):199-203.
 HUANG Hui,ZUO Yonghua,LU Meihua.The Generic Stability of Fixed Point and Fan Ky Point in Diverse Topology[J].,2017,(02):199-203.
点击复制

多重拓扑下Fan Ky点的通有稳定性()
分享到:

《江西师范大学学报》(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年02期
页码:
199-203
栏目:
出版日期:
2017-03-01

文章信息/Info

Title:
The Generic Stability of Fixed Point and Fan Ky Point in Diverse Topology
作者:
黄 辉左勇华卢美华
1.江西师范大学教育学院,江西 南昌 330022; 2.江西都昌第二中学,江西 九江 332600; 3.清华大学深圳研究生院,广东 深圳 518055; 4.江西科技学院理科部,江西 南昌 330022
Author(s):
HUANG HuiZUO YonghuaLU Meihua
1.College of Education,Jiangxi Normal University,Nanchang Jiangxi 330022,China; 2.Duchang No.2 Middle School in Jiangxi,Jiujiang Jiangxi 332600,China; 3.Graduate School at Shenzhen,Tsinghua University,Shenzhen Guangdong 518055,China; 4.School of Scienc
关键词:
集合族空间 公共元 Fan Ky点
Keywords:
family-of-set space common elements Fan Ky point
分类号:
F 224.0; O 153.1
文献标志码:
A
摘要:
建立集合族空间,讨论了公共元的通有稳定性,得到了闭集族空间上的交运算在Hausdorff 拓扑下的上半连续性.在2种拓扑结构下研究了Fan Ky点的通有稳定性,显示了集族空间交运算方法具有良好的适应性.
Abstract:
A family-of-set space is established.And its common elements’ generic stability is studied.The upper semi-continuity of operation of sets’ intersection in family-of-closed-set space is obtained.And generic stability of Fan Ky point is studied in diverse topology.It has good applicability of the method of sets’ intersection in family-of-closed-set space.

参考文献/References:

[1] Tan K K,Yu Jian,Yuan Xianzhi.The stability of coincident points for multivalued mappings [J].Nonlinear Analysis,1995,25(2):163-168.
[2] Carbonell-Nicolau O.Further results on essential Nash equilibria in normal-form games [J].Economic Theory,2015,59(2):277-300.
[3] Fort M K.Points of continuity of semi-continuous functions [J].Publ Math Debrecen,1951(2):100-102.
[4] Yu Jian,Xiang Shuwen.The stability of the set of KKM points [J].Nonlinear Analysis,2003,54(5):839-844.
[5] Fan K.A minimax inequality and applications:Inequalities III [M].New York:Academic Press,1972.
[6] 陈剑尘,龚循华.锥凸对称向量拟均衡问题解集的通有稳定性 [J].数学物理学报,2010,30(4):1006-1017.
[7] 贾文生,向淑文.信息集广义多目标对策弱Pareto-Nash平衡点的存在性和稳定性 [J].运筹学学报,2015,19(1):9-17.
[8] 高静,邬冬华,张广.不确定条件下n5 参考文献 [1] Tan K K,Yu Jian,Yuan Xianzhi.The stability of coincident points for multivalued mappings [J].Nonlinear Analysis,1995,25(2):163-168.
[2] Carbonell-Nicolau O.Further results on essential Nash equilibria in normal-form games [J].Economic Theory,2015,59(2):277-300.
[3] Fort M K.Points of continuity of semi-continuous functions [J].Publ Math Debrecen,1951(2):100-102.
[4] Yu Jian,Xiang Shuwen.The stability of the set of KKM points [J].Nonlinear Analysis,2003,54(5):839-844.
[5] Fan K.A minimax inequality and applications:Inequalities III [M].New York:Academic Press,1972.
[6] 陈剑尘,龚循华.锥凸对称向量拟均衡问题解集的通有稳定性 [J].数学物理学报,2010,30(4):1006-1017.
[7] 贾文生,向淑文.信息集广义多目标对策弱Pareto-Nash平衡点的存在性和稳定性 [J].运筹学学报,2015,19(1):9-17.
[8] 高静,邬冬华,张广.不确定条件下作博弈均衡点集的通有稳定性 [J].应用数学与计算数学学报,2014,28(3):336-342.
[9] 杨光惠,向淑文.广义极大元的通有稳定性 [J].广西师范大学学报:自然科学版,2013,31(1):54-56.
[10] 左勇华.集合族交运算的上半连续性和公共元的通有稳定性 [J].江西师范大学学报:自然科学版,2012,36(1):67-70.
[11] 张德金.有限理性与KKM点集的稳定性 [J].重庆师范大学学报:自然科学版,2011,28(1):31-34.
[12] 俞建.关于良定问题 [J].应用数学学报,2011,34(6):1007-1022.
[13] 俞建.良定叠合点问题 [J].贵州科学,2001,19(3):1-4.
[14] 俞建,袁先智.樊畿不等式及其在博弈论中的应用 [J].应用数学与计算数学学报,2015,29(1):59-68.
[15] 文开庭.转移紧开覆盖的新的Fan Ky匹配定理及其对极大元的应用 [J].数学进展,2009,38(3):295-301.
[16] 张石生,康世焜,郭伟平.Fan Ky匹配定理的推广及应用 [J].四川大学学报:工程科学版,1994(6):53-59.
[17] 左勇华,卢美华.集族交运算的连续性和不动点、Fan Ky点的通有稳定性 [J].江西师范大学学报:自然科学版,2016,40(1):39-42.
[18] Klein E,Thomson A.Theory of correspondences [M].New York:Wiley,1984.

相似文献/References:

[1]左勇华.集合族交运算的上半连续性和公共元的通有稳定性[J].江西师范大学学报(自然科学版),2012,(01):67.
 ZUO Yong-hua.On Upper Semi-Continuity of Operation of Set?s Inter-Section and Common Element?s Generic Stability[J].,2012,(02):67.
[2]左勇华,卢美华.集族交运算的连续性和不动点、Fan Ky点的通有稳定性[J].江西师范大学学报(自然科学版),2016,40(01):39.
 ZUO Yonghua,LU Meihua.The Continuity of Sets' Intersection Operation and the Generic Stability of Fixed Point and Fan Ky Point[J].,2016,40(02):39.

备注/Memo

备注/Memo:
收稿日期:2016-11-10基金项目:国家自然科学基金(61563020)资助项目.通信作者:左勇华(1976-),男,江西湖口人,研究员,博士,主要从事数量经济、博弈论、产业经济和科技政策等研究.E-mail:zuo.yonghua@sz.tsinghua.edu.cn黄 辉(1979-),男,江西都昌人,高级讲师,主要从事基础数学的教学和研究.E-mail:dcezbgs@163.com
更新日期/Last Update: 1900-01-01